Detectability of fast cloud adjustments in large-scale high-resolution simulations

O. Sourdeval1, M. Costa Surós2, S. Crewell2, C. Carbojal Henken3, C. Engler4, J. Hesemann3, C. Hoose4, H. Rybak5, J. Kretzschmar1, and J. Quaas1
1 - Universität Leipzig, Germany; 2 - University of Cologne, Germany, UK; 3 - Frei Universität Berlin, Germany; 4 - TROPOS, Germany; 5 - Karlsruhe Institute of Technology, Germany; 6 - DWD, Germany

Motivations

- Cloud adjustments to anthropogenic aerosol perturbations remain an important source of uncertainties on global radiative forcing estimates. Joint modeling-observation efforts are needed.
- This study seeks to identify, quantify and better understand these effects through sensitivity analyses based on large-scale high-resolution simulations. Their detectability by spaceborne or ground-based observations is also assessed.

Model and experiment framework

- The high resolution simulations are performed by ICON in a Large Eddy Model configuration.
- The domain covers Germany.
- We focus on a 24-hr simulation (02 May 2013).
- Two moment microphysics scheme with 6 hydrometeor classes (Seifert-Beheng).
- Aerosols are not yet interactive!
- The framework consists in analyzing the response of clouds, precipitation and radiation to a CCN (Cloud Condensation Nuclei) perturbation.

Cloud adjustments in ICON LEM simulations

- Characteristics of ICON-LEM (Heinze et al., 2017):
 - 156-m of horizontal resolution, 150 vertical levels
 - The domain covers Germany.
 - We focus on a 24 hr simulation (02 May 2013)
 - Two moment microphysics scheme with 6 hydrometeor classes (Seifert-Beheng)
 - Aerosols are not yet interactive!

Detectability in observations

- Can the adjustments found in ICON-LEM be detected?
 - Use of data from supersites and satellite measurements.
 - Comparisons to initial 1xCCN and 2xCCN simulations. Is one more realistic than the other?

Representativeness for global adjustments

- Similar runs (1xCCN and 2xCCN) were made with ICON-NWP.
 - 14 days simulations from 02 May 2013 and no restart. Different initialization (IFS).
 - New and old radiation modules were tested.
 - 0.25°x0.25° over DOM03 domain.

- Analyses of daily mean adjustments to 2xCCN in T-AMIP with updated radiation.
- Impact on SW net TOA fluxes: -5 W.m^-2 with old radiation (adjustment effects) and -10 W.m^-2 with new module (Twomey + adjustments).
- Different from LEM (old radiation predicted -0.7 W.m^-2).
- This suggests about half Twomey and half adjustment contributions to the ERF.
- Roughly agrees with literature studies (e.g. Cherian et al. 2014: -4W.m^-2/decade between 1990 and 2005)