1. Introduction

Context:
- Accurate profiles of temperature and humidity are essential for climate monitoring, a better process understanding and weather forecasting
- Ground-based measurements in the microwave and infrared (IR) spectrum give information on the temperature and humidity profile of the lower troposphere
- Satellite measurements provide complementary information

Key questions:
- Given some a priori knowledge on the atmospheric state as well as realistic a priori and measurement uncertainties, how much information is added by different ground-based and satellite sensors?
- Do the results depend on the atmospheric situation?

2. Retrieval strategy

- 1D-Var approach to retrieve an atmospheric profile \(x \) (here, profiles of temperature \(T \) and absolute humidity \(q \)) from observation \(y \):

 \[
 x - x = (K'S'K + S')^{-1}K'S'(y - x) + S'x
 \]

 with \(K' = F(x) \)

- Given an a priori profile \(x_a \) as well as the a priori and measurement/forward model uncertainties \(S_a \) and \(S_r \), respectively, the posterior error covariance matrix \(S \) and the degrees of freedom for signal (DOF), i.e. number of independent pieces of information from \(y \), can be calculated:

 \[
 S = (K'S'K + S')^{-1}
 \quad \text{DOF} = \text{trace}(A) \quad \text{with} \quad A = S^{-1}(K'S'K + S')^{-1}
 \]

3. Experimental setup

- analysis is performed for different clear-sky atmospheric conditions (Fig. 1)
- different combinations of ground-based and satellite MW and IR sensors (Tab. 1)
- climatological mean profile \(x_\text{clim} \) and corresponding \(S_\text{clim} \) from 12-year data set of 6-hourly clear-sky radiosonde ascents in Lindenberg, Germany
- random instrument noise \((x_n) \) and the measurement uncertainties \(S_n \)

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Frequency/Wavenumber</th>
<th># obs</th>
<th>Noise (\text{min}/\text{max})</th>
<th>Forward model for (K) calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>MWR</td>
<td>22.2-31.4, 54.8-58.5 GHz</td>
<td>34</td>
<td>0.1/0.2 K</td>
<td>PAMTRA [2]</td>
</tr>
<tr>
<td>HATPRO</td>
<td>559-1344 cm(^{-1})</td>
<td>46</td>
<td>1.8/0.25 RU</td>
<td>LURFM [3]</td>
</tr>
<tr>
<td>AERI</td>
<td>1.9-13.4 µm</td>
<td>8</td>
<td>0.1037 K</td>
<td>RTTOV [4]</td>
</tr>
<tr>
<td>SEVIRI</td>
<td>23.8, 31.4, 50.3-57.617, 89 GHz</td>
<td>15</td>
<td>0.3/1.2 K</td>
<td>PAMTRA [2]</td>
</tr>
<tr>
<td>AMSU-A</td>
<td>89, 157, 184.311, 186.311, 190.311 GHz</td>
<td>5</td>
<td>0.22/0.51 K</td>
<td>PAMTRA [2]</td>
</tr>
</tbody>
</table>

4. Information content and retrieval uncertainty

- ground-based sensors provide most information below 500 hPa (Fig. 2)
- benefit due to satellite sensors especially in upper part of troposphere
- results depend on atmospheric condition, e.g. for HATPRO+ALL:
 - warm-humid: maximum DOF for \(T \) (7.9), minimum for \(q \) (6.0) due to saturation of IR channels
 - cold-dry: minimum DOF for \(T \) (7.0), maximum for \(q \) (10.6)
- benefit of sensor synergy hardly affected by surface emissivity uncertainties
- doubling measurement uncertainties or halving \(S_\text{clim} \) reduce information content from additional sensors by 0.1-0.3 (0.2-1) in \(T \) (q)
- variability in DOF due to atmospheric condition much higher

5. Summary and outlook

- amount of information in \(T \) (q) is roughly doubled (tripled) compared to ground-based MWR, when additional ground-based spectral IR, as well as MWR and IR observations from satellite are included
- analysis will be extended to 500 profiles which are representative of the whole data base
- full retrieval including HATPRO, AERI and SEVIRI measurements under development
- subsequent inclusion of cloud properties in the retrieval

Acknowledgments:
This work has been funded by the German Research Foundation within the project ICOS – Integrating Cloud Observations from Ground and Space under grant CR111/9-1. We thank the German Weather Service for providing the radiosonde data. Furthermore, we thank Dr. David D. Turner for assisting in the radiative transfer calculations.

References:
[5] Acknowledgements: This work has been funded by the German Research Foundation within the project ICOS – Integrating Cloud Observations from Ground and Space under grant CR111/9-1. We thank the German Weather Service for providing the radiosonde data. Furthermore, we thank Dr. David D. Turner for assisting in the radiative transfer calculations.

Figure 1: Profiles of the atmospheric conditions (Fig. 1) used in the study.

Figure 2: DOF for \(T \) (left) and \(q \) (right) close to mean profile (Fig. 1). For HATPRO, the actual DOF is depicted.